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Investigating the Quality of Spiess-Like and SPSA approaches for Dynamic 

OD Matrix Estimation 

Since OD matrices are not directly observable, indirect procedures have been developed to 

estimate OD matrices from traffic data. Traffic management practice must move toward 

dynamic traffic assignment models because they capture congestion propagation effects. In 

this context, dynamic OD matrices are needed. This paper first explores the extension of a 

well-known bilevel analytical static method, (Spiess 1990) to the dynamic context, then 

analyses the solutions obtained regarding both convergence to measured traffic data and 

structural similarity to an a priori OD matrix. A simulation optimization technique, SPSA, is 

then proposed because its flexibility allows inclusion of traffic counts (as in Spiess method) 

and emerging ICT traffic measurements. The performances of these two types of algorithms 

are analysed in detail, focussing on faults of classical convergence measures to obtain an 

estimated dynamic OD matrix structurally similarity to the a priori OD matrix and pros and 

cons of variants of selected methods.  

Keywords: traffic simulation; OD estimation; simulation optimization; traffic assignment 

1. Introduction 

1.1. Motivation and problem formulation 

Origin to Destination (OD) matrices that describe the mobility patterns across a road network 

serve as the main input to most traffic models, namely the dynamic traffic models implementing 

either Dynamic Traffic Assignment (DTA) or Dynamic User Equilibrium (DUE) approaches. 

The estimation of OD matrices still represents a research challenge, since OD matrices are not 

yet observable or at least not fully observable. In spite of the advances made in taking traffic 

measurements using Information and Communication Technologies (ICT), they only provide 

partial estimates which alone are not yet sufficient to provide unquestionable estimates and must 

be fused with data from other sources. These fusion processes pertain to research on better ways 

to adjust or correct the initial estimate of an existing OD matrix, 𝑿𝑿𝑯𝑯, which is usually called the 
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“historical” or “target” OD matrix. These corrections are based on a set of traffic measurements, 

usually traffic volumes 𝒀𝒀�, which are measured in a subset of links on the road network. 

The conventional approaches are usually based on a bilevel optimization approach, 

generally considered to be the most efficient formulation for OD matrix adjustment exploiting 

traffic volumes 𝒀𝒀�, that are measured in a subset of links of the road network. Its efficiency is 

based on its explicitly taking into account the congestion effects that influence the use of paths 

between OD pairs. The most common formulation considers the available sources of data to be: 

• An historical or seed OD matrix 𝑿𝑿𝑯𝑯 that is usually made available by a household survey 

or a former demand model.  

• Traffic volumes (i.e., link flow counts 𝒀𝒀�) that are measured by detection stations (i.e., 

link count posts) for a subset of links 𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿 in the network, where 𝐿𝐿 is the set of 

links. 

 

The problem is then formulated as an optimization problem: 

min𝑍𝑍(𝑿𝑿,𝒀𝒀) = 𝑤𝑤1𝐹𝐹1(𝑿𝑿,𝑿𝑿𝑯𝑯) + 𝑤𝑤2𝐹𝐹2�𝒀𝒀,𝒀𝒀��                                                            (1) 

𝒀𝒀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑿𝑿)                                                      

𝑿𝑿 ≥ 0                                                                              

where 𝐹𝐹1 and 𝐹𝐹2 are suitable distance functions between estimated and observed values; while 

𝑤𝑤1 and 𝑤𝑤2 are weighting factors reflecting the uncertainty of the information contained in 𝑿𝑿𝑯𝑯 

and 𝒀𝒀�, respectively. The underlying hypothesis is that 𝒀𝒀(𝑿𝑿) are the link flows predicted by 
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assigning the demand matrix X onto the network, which can be expressed by a proportion of the 

OD demand flows passing through the count location at a certain link. In terms of the assignment 

matrix 𝑨𝑨(𝑿𝑿), which is the proportion of OD flow that contributes to a certain link traffic count, 

is: 

                                                       𝒀𝒀 = 𝑨𝑨(𝑿𝑿)𝑿𝑿                                                              (2) 

This is a bilevel optimization problem that solves (at the upper level) the nonlinear 

optimization problem by substituting the estimated flows 𝒀𝒀 in the objective function of (1) with 

the relationship (2): 

                               min𝑍𝑍(𝑿𝑿,𝒀𝒀) = 𝑤𝑤1𝐹𝐹1(𝑿𝑿,𝑿𝑿𝑯𝑯)  + 𝑤𝑤2𝐹𝐹2�𝑨𝑨(𝑿𝑿)𝑿𝑿,𝒀𝒀��                           (3) 

𝑿𝑿 ≥ 0    

To estimate a new assignment matrix 𝑿𝑿, while at the lower level, a static user equilibrium 

assignment is used to solve the assignment problem  𝒀𝒀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑿𝑿) in order to estimate the 

assignment matrix 𝑨𝑨(𝑿𝑿) induced by the new 𝑿𝑿. (Spiess 1990) is a good example of a seminal 

model based on this approach. 

 

1.2 Objectives 

The research reported in this paper has three main objectives. First, our goal is to explore 

extending the analytical approaches to the dynamic case. In other words, instead of a unique 

historical OD matrix 𝑿𝑿𝑯𝑯 for a unique time interval covering the whole-time horizon  𝑇𝑇 of the 

analysis, we use a set of historical OD matrices 𝑿𝑿𝒓𝒓𝑯𝑯 for each of the time intervals 𝑟𝑟 in which the 
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time horizon 𝑇𝑇 has been split. At the same time, these traffic counts are assumed to be available 

for each time interval 𝑡𝑡 in time horizon 𝑇𝑇. The link flow measurements  �𝑌𝑌�𝑙𝑙,𝑡𝑡� are measured by 

detection stations at the subset of links 𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿 in the network.  

Second, a further goal is to explore extending the dynamic case of an alternative 

analytical approach for solving the bilevel model (1) through a simulation optimization approach 

based on using the Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992, 

1998). 

In both cases, if the dynamic approach accounts for the time dependency of the historical 

matrix 𝑿𝑿𝒓𝒓𝑯𝑯, then the static assignment must be replaced by a dynamic assignment in order to 

solve the lower level problem. The static assignment would not be able to account for either the 

time evolution of the congestion or the consequent rerouting; therefore, there would remain no 

accounting for the changes in the assignment matrix that determines link flows. However, 

emulating these behaviours is exactly what is expected from a dynamic assignment. Replacing 

the static assignment with the dynamic one requires a reformulation of the usual approaches. 

Analysing this reformulation and its computational performance is one objective of this paper. 

The dynamic assignment engine used in our case is the Simulation-based Assignment (SBA) 

implemented in Visum-18 (PTV AG 2018). 

Our third objective addresses an additional question that needs further research, namely 

in regard to measuring the quality of the corrected OD matrix with the adjustment procedure. 

This is usually handled by the distance matrices 𝐹𝐹1and 𝐹𝐹2 in the objective function in (1). 

Assuming that, if 𝐹𝐹1and 𝐹𝐹2 are distance functions, then the minimization process will achieve the 

expected results, which are presumably confirmed a posteriori by the regression analysis of the 

observed 𝒀𝒀� and estimated 𝑌𝑌 link flow counts. However, given that the problem is highly 
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underdetermined, there could exist different solutions that provide the same values for the 

conventional distance functions 𝐹𝐹1 while having different structures (Djukic 2014) and similar 

values of 𝑅𝑅2. In that case, it does not seem that the correlation coefficient is a good indicator of 

the quality; rather, it simply shows that the estimated 𝒀𝒀 link flow counts, calculated by (2) from 

the corrected matrix 𝑿𝑿, are close enough to the observed  𝒀𝒀� link flows. However, it may happen 

that the model (1) acts as a meta-regression model by pulling or pushing the OD trips 𝑿𝑿 just to fit 

link flows in terms of the paths using the links, independently of the underlying spatial-temporal 

structure of the OD demand. Thus, to state it more explicitly: the third objective of this paper is 

to analyse the structural similarity of the estimated OD matrix with respect to the a priori OD 

matrix. 

2. Analytical Formulations 

Static models have made wide use of the analytical approaches that include flow counts as 

complementary information to reduce underdetermination when solving the described 

minimization problem (1) (Codina and Montero 2006; Lundgren and Peterson 2008; Spiess 

1990). The reason for this is because they are algorithmically efficient and present nice 

properties for convergence and stability. However, since they are static, they are supported by 

static assignment models.  

Some researchers (Frederix, et al. 2013; Lundgren and Peterson 2008; Toledo and 

Kolechkina 2013; Yang et al.2017) drew attention to the role played by the quality of the 

assignment matrix, which results from the lower level assignment process when estimating the 

flows used in the upper level. Therefore, those researchers have proposed either analytical or 

empirical approaches for improving it. The analytical approaches assume a functional 
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dependency that allows for a Taylor expansion around the current solution. While some authors 

(Lundgren and Peterson 2008) still derive the expansion from a static traffic assignment, others 

(Frederix et al. 2013; Toledo and Kolechkina 2013) propose a dynamic traffic assignment to 

account for time dependencies. This is appropriate for working with congestion building 

processes that would be captured by the analytical expansion of the assignment matrix. While 

(Frederix et al. 2013) offers a relevant theoretical contribution, (Toledo and Kolechkina 2013) 

provides more insight into applying it in larger networks- However, their paper mentions Spiess 

as one of the tested alternatives, and yet they do not provide further details about its extension to 

dynamic scenarios. It seems to be a particular case of their approach, which uses second-order 

derivatives and complex numerical optimization procedures (e.g., Armijo rules to compute the 

step length), which require higher computational effort.  Therefore, this paper seeks to validate 

the modification of the Spiess procedure using, on the one hand, a first-order approach to the 

assignment matrix that is provided by a Dynamic Traffic Assignment; and, on the other, an ad 

hoc reformulation of the analytical calculation of the gradient that is suitable for a 

straightforward calculation of the step length at each iteration. 

Throughout this paper, the following notation is used: 

• 𝐼𝐼 is the set of OD pairs. 

• 𝒯𝒯 = {1, … ,𝑇𝑇} is the set of time intervals. 

• 𝐿𝐿 is the set of links in the network. 𝐿𝐿� ⊆ 𝐿𝐿 is the subset of links that have sensors. 

𝑦𝑦�𝑙𝑙,𝑡𝑡 are the measured flow counts at link 𝑙𝑙 during time period 𝑡𝑡. 𝑦𝑦𝑙𝑙,𝑡𝑡 are the corresponding 

simulated flow counts, ∀𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿 and ∀𝑡𝑡 ∈ 𝒯𝒯. 𝒀𝒀 = �𝑦𝑦𝑙𝑙,𝑡𝑡� and 𝒀𝒀� = �𝑦𝑦�𝑙𝑙,𝑡𝑡� are the link 

flow counts in vector form. 
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• 𝑥𝑥𝑛𝑛,𝑟𝑟 are the OD flows for 𝑛𝑛-th OD pairs departing during time period 𝑟𝑟, ∀𝑛𝑛 ∈ 𝐼𝐼 and  ∀𝑟𝑟 ∈

𝒯𝒯. 𝑿𝑿 = �𝑥𝑥𝑛𝑛,𝑟𝑟� are the OD flows in vector form. 

• 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡  is the flow proportion of the 𝑛𝑛-th OD pair, 𝑛𝑛 ∈ 𝐼𝐼, departing at time period 𝑟𝑟 ∈ 𝒯𝒯 and 

captured by link 𝑙𝑙 ∈ 𝐿𝐿� at time period 𝑡𝑡 ∈ 𝒯𝒯. 𝑨𝑨 = �𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 � is the assignment matrix. 

Given a network with a set of links 𝐿𝐿, a set 𝐼𝐼 of OD pairs, and the set of time periods 𝒯𝒯. 

The goal of the dynamic OD-matrix estimation problem is to find a feasible vector (OD-matrix) 

𝑿𝑿∗ ∈ G ⊆ ℝ+
𝐼𝐼×𝒯𝒯, where 𝑿𝑿∗ = �𝑥𝑥𝑛𝑛,𝑟𝑟

∗ �, 𝑛𝑛 ∈  𝐼𝐼, 𝑟𝑟 ∈ 𝒯𝒯, consists of the demands for all OD pairs. It 

can be assumed that, when assigning the time-sliced OD matrices onto the links of the network, 

it should be done according to an assignment proportion matrix 𝑨𝑨 = �𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 �,∀𝑙𝑙 ∈  𝐿𝐿,∀𝑛𝑛 ∈

𝐼𝐼,∀𝑟𝑟, 𝑡𝑡 ∈ 𝒯𝒯, where each element in the matrix is defined as the proportion of the OD demand  

𝑥𝑥𝑛𝑛,𝑟𝑟 that uses link 𝑙𝑙 at time period 𝑡𝑡. The notation 𝑨𝑨 = 𝑨𝑨(𝑿𝑿) is used to indicate that, in general, 

these proportions depend on the demand. The linear relationship between the flow count on a 

link and the given OD pair is in matrix form, which thus sets the vector of detected flows as 𝒀𝒀 =

(𝒀𝒀𝟏𝟏, … ,𝒀𝒀𝑻𝑻) = (𝑦𝑦1,1, … ,𝑦𝑦𝐿𝐿,1, … ,𝑦𝑦1,𝑇𝑇, … 𝑦𝑦𝐿𝐿,𝑇𝑇)  and the vector of OD flows as 𝑿𝑿 = (𝑿𝑿𝟏𝟏, … ,𝑿𝑿𝑻𝑻) =

(𝑥𝑥1,1, … , 𝑥𝑥𝑁𝑁,1, … , 𝑥𝑥1,𝑇𝑇 , … , 𝑥𝑥𝑁𝑁,𝑇𝑇). The relationship can be expressed as a matrix product, that is: 

𝒀𝒀 = 𝑨𝑨(𝑿𝑿) ⋅ 𝑿𝑿 

         with 𝑨𝑨(𝑿𝑿) = �

𝑨𝑨𝟏𝟏,𝟏𝟏 𝟎𝟎 ⋯
𝑨𝑨𝟏𝟏,𝟐𝟐 𝑨𝑨𝟐𝟐,𝟐𝟐 𝟎𝟎
⋮ ⋱ ⋱

𝟎𝟎
⋮
𝟎𝟎

𝑨𝑨𝟏𝟏,𝐓𝐓 ⋯ 𝑨𝑨𝑻𝑻−𝟏𝟏,𝑻𝑻 𝑨𝑨𝑻𝑻,𝑻𝑻

� where 𝑨𝑨𝒓𝒓,𝒕𝒕 = �
𝑎𝑎1,𝑟𝑟
1,𝑡𝑡 ⋯ 𝑎𝑎𝑁𝑁,𝑟𝑟

1,𝑡𝑡

⋮ ⋱ ⋮
𝑎𝑎1,𝑟𝑟
𝐿𝐿,𝑡𝑡 ⋯ 𝑎𝑎𝑁𝑁,𝑟𝑟

𝐿𝐿,𝑡𝑡
�       (4) 

where 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡  represents the proportion of OD flow departing at time 𝑟𝑟, 𝑥𝑥𝑛𝑛,𝑟𝑟, passing through link 𝑙𝑙 

at time 𝑡𝑡, 𝑦𝑦𝑙𝑙,𝑡𝑡. 𝑨𝑨𝒓𝒓,𝒕𝒕 represents the assignment matrix for the departing flows at time window 𝑟𝑟 
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detected at time window 𝑡𝑡 and, therefore, 𝑨𝑨 is a lower-diagonal matrix, because OD flow 

departing at time 𝑟𝑟 cannot pass through link 𝑙𝑙 at time 𝑡𝑡 <  𝑟𝑟. 

This linear mapping between the link flows and the OD flows is indeed the first term in 

the Taylor expansion of the relationship between link flows and OD flows, where additional 

terms capture the assignment matrix’s sensitivity to changes in the OD flows, path choice and 

congestion propagation effects (Frederix et al. 2011, 2013; Toledo and Kolechkina 2013). Let 𝑿𝑿′ 

be in the neighbourhood of 𝑿𝑿. Then, the Taylor expansion is: 

𝑦𝑦𝑙𝑙,𝑡𝑡 = ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 (𝑿𝑿′)𝑥𝑥𝑛𝑛,𝑟𝑟

′
𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

+ ��
𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡(𝑿𝑿′)
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

�𝑥𝑥𝑛𝑛,𝑟𝑟 − 𝑥𝑥𝑛𝑛,𝑟𝑟
′ �

𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

=                                            

    = ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 (𝑿𝑿′)𝑥𝑥𝑛𝑛,𝑟𝑟

′
𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

+ ��
𝜕𝜕�∑ ∑ 𝑎𝑎𝑛𝑛,𝑟𝑟

𝑙𝑙,𝑡𝑡 (𝑿𝑿′)𝑥𝑥𝑛𝑛,𝑟𝑟
𝑡𝑡
𝑟𝑟=1𝑛𝑛∈𝐼𝐼 �
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

�
𝑿𝑿′
�𝑥𝑥𝑛𝑛,𝑟𝑟 − 𝑥𝑥𝑛𝑛,𝑟𝑟

′ �
𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

= 

          = ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 (𝑿𝑿′)𝑥𝑥𝑛𝑛,𝑟𝑟

′
𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

+ ���𝑥𝑥𝑛𝑛,𝑟𝑟 − 𝑥𝑥𝑛𝑛,𝑟𝑟
′ � �� �

𝜕𝜕𝑎𝑎𝑛𝑛′,𝑟𝑟′
𝑙𝑙,𝑡𝑡 (𝑿𝑿′)
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

�
𝑿𝑿′
𝑥𝑥𝑛𝑛′,𝑟𝑟′
′

𝑡𝑡

𝑟𝑟′=1𝑛𝑛′∈𝐼𝐼

�
𝑡𝑡

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

    (5) 

Since one of the objectives of our research is to investigate extending static cases to 

dynamic cases and, given that Spiess’ static approach (Spiess 1990) is one of the most robust in 

practice, we decided to redefine Spiess’ approach to the dynamic case by simply using the first 

term in the above Taylor expansion. It does not account for the propagation effects, but it 

explicitly considers the time dependencies. 

2.1. Dynamic Spiess algorithm 

The extrapolation of the Spiess method to a dynamic traffic assignment (DTA) is possible by 

including the time windows to the entire formulation, as follows: 
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                         min𝑍𝑍(𝑿𝑿) =
1
2
����� � 𝑎𝑎𝑛𝑛,𝑟𝑟

𝑙𝑙,𝑡𝑡 𝑥𝑥𝑛𝑛,𝑟𝑟

𝑡𝑡

𝑟𝑟 = 1𝑛𝑛∈𝐼𝐼

� − 𝑦𝑦�𝑙𝑙,𝑡𝑡�

2

𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈ 𝒯𝒯

                                 (6) 

𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 = Assignment(𝑿𝑿)      

𝑥𝑥𝑛𝑛,𝑟𝑟 ≥ 0                                 

where 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡  is the assignment matrix described before. Therefore, the linear combination inside 

the brackets is the simulated flow 𝑦𝑦𝑙𝑙,𝑡𝑡, and 

                                                              
𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

= 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡                                                                      (7) 

As in (Spiess 1990), the chain rule can be used to obtain the gradient of the objective 

function: 

                       
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

=  ��
𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

�𝑦𝑦𝑙𝑙,𝑡𝑡  −  𝑦𝑦�𝑙𝑙,𝑡𝑡�
𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈𝒯𝒯

=  ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 �𝑦𝑦𝑙𝑙,𝑡𝑡  −  𝑦𝑦�𝑙𝑙,𝑡𝑡�

𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈𝒯𝒯

            (8) 

And to find the optimal step size by using the same procedure, we obtain similar 

equations: 

                 𝑦𝑦𝑙𝑙,𝑡𝑡′ =  
𝑑𝑑 𝑦𝑦𝑙𝑙,𝑡𝑡
𝑑𝑑 𝜆𝜆

=  ��
𝑑𝑑 𝑥𝑥𝑛𝑛,𝑟𝑟

𝑑𝑑 𝜆𝜆
𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟𝑛𝑛∈𝐼𝐼

𝑡𝑡

𝑟𝑟=1

=  ��−𝑥𝑥𝑛𝑛,𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟𝑛𝑛∈𝐼𝐼

𝑡𝑡

𝑟𝑟=1

                 (9) 

The optimal step length λ can then be calculated solving a 1-dimensional optimization 

problem, whose solution is given by: 
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Z′(𝜆𝜆) =  ��𝑦𝑦𝑙𝑙,𝑡𝑡′ �𝑦𝑦�𝑙𝑙,𝑡𝑡 − 𝑦𝑦�𝑙𝑙,𝑡𝑡 + 𝜆𝜆𝑦𝑦𝑙𝑙,𝑡𝑡′ � = 0
𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈𝒯𝒯 

 

                                                           𝜆𝜆∗ =  
−∑ ∑ 𝑦𝑦𝑙𝑙,𝑡𝑡′ (𝑦𝑦𝑙𝑙,𝑡𝑡 − 𝑦𝑦�𝑙𝑙,𝑡𝑡)𝑙𝑙∈𝐿𝐿�𝑡𝑡∈𝒯𝒯

∑ ∑ 𝑦𝑦𝑙𝑙,𝑡𝑡′
2

𝑙𝑙∈𝐿𝐿�𝑡𝑡∈𝒯𝒯
                                               (10) 

And then, the iterative procedure described by (Spiess 1990) can be used in DTA using 

these new equations, which become expanded with the time windows.  

2.2. Dynamic Spiess variants 

Variants of Dynamic Spiess have been tested, aimed at improving computational performance by 

decreasing the number of assignments, or adding a distance term between OD matrices in the 

Objective Function. 

2.2.1. Reassigning at convergence 

As in (Spiess 1990), the iterative procedure used to solve the minimization problem (6) employs 

gradient methods (8) and (10), and this requires one full assignment of the OD matrices at each 

single iteration of the minimization procedure. The assignment matrix, 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 , depends directly on 

𝑿𝑿 = (𝑥𝑥𝑛𝑛,𝑟𝑟); so each iteration of the minimization problem requires a single assignment of 𝑿𝑿 

onto the network, which increases the computational time. Let us assume that 𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡  does not 

change significantly at each iteration. Then, reassigning at every single iteration is not needed 

and the computational time is therefore significantly reduced, because DTA assignment is a 

time-consuming procedure. In this case, the iterations must be distinguished between Major 

iterations (when an assignment is required at the lower level) and Minor iterations (when only 

the minimization iterations at the upper level are considered).  
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The jump from the upper level to the lower level is made only when a convergence 

criterion is satisfied. The assignment matrix is then recalculated, and more minor iterations are 

launched. 

2.2.2. Quadratic function for 𝑿𝑿𝑯𝑯 

Furthermore, we have added a second term in the objective function in order to compare it to a 

historical OD matrix. In a first approach, the quadratic function is used: 

                min𝑍𝑍  =
1
2
����� � 𝑎𝑎𝑛𝑛,𝑟𝑟

𝑙𝑙,𝑡𝑡 𝑥𝑥𝑛𝑛,𝑟𝑟

𝑡𝑡

𝑟𝑟 = 1𝑛𝑛∈𝐼𝐼

� − 𝑦𝑦�𝑙𝑙,𝑡𝑡�

2

𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈𝒯𝒯

+
𝑤𝑤
2

 ���𝑥𝑥𝑛𝑛,𝑟𝑟 − 𝑥𝑥𝑛𝑛,𝑟𝑟
𝐻𝐻 �

2

𝑛𝑛∈𝐼𝐼𝑟𝑟∈𝒯𝒯

            (11) 

In this case, Equation (8) is updated as: 

         
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

=  ��
𝜕𝜕𝑦𝑦𝑙𝑙,𝑡𝑡
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

�𝑦𝑦𝑙𝑙,𝑡𝑡  −  𝑦𝑦�𝑙𝑙,𝑡𝑡�
𝑙𝑙∈ 𝐿𝐿�

+
𝑤𝑤
2
𝑥𝑥𝑛𝑛,𝑟𝑟

𝑡𝑡∈𝒯𝒯

=  ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 �𝑦𝑦𝑙𝑙,𝑡𝑡  −  𝑦𝑦�𝑙𝑙,𝑡𝑡�

𝑙𝑙∈ 𝐿𝐿�

+
𝑤𝑤
2
𝑥𝑥𝑛𝑛,𝑟𝑟

𝑡𝑡∈𝒯𝒯

         (12) 

2.2.3. Entropy function for 𝑿𝑿𝑯𝑯 

Due to criticism of using Euclidean distances (Frederix et al. 2013), using a different distance 

function is suggested. Furthermore, (Djukic 2014) also shows that using a Euclidian distance 

term can result in two matrices that have very different structures but maintain the same distance 

value with respect to the reference matrix.  Although additional measurements are expected to 

improve the outcome of the OD estimation in terms of structural similarity, the analytic 

approaches do not seem capable to add measurements that are different from the link counts.  

The classical entropy function has been chosen because of its structural meaning. Then, 

equations (11) and (12) become: 
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𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍  =
1
2
����� � 𝑎𝑎𝑛𝑛,𝑟𝑟

𝑙𝑙,𝑡𝑡 𝑥𝑥𝑛𝑛,𝑟𝑟

𝑡𝑡

𝑟𝑟 = 1𝑛𝑛∈𝐼𝐼

� − 𝑦𝑦�𝑙𝑙,𝑡𝑡�

2

𝑙𝑙∈ 𝐿𝐿�𝑡𝑡∈𝒯𝒯

+
𝑤𝑤
2

 ��𝑥𝑥𝑛𝑛,𝑟𝑟 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑥𝑥𝑛𝑛,𝑟𝑟

𝑥𝑥𝑛𝑛,𝑟𝑟
𝐻𝐻 �

𝑛𝑛∈𝐼𝐼𝑟𝑟∈𝒯𝒯

 

                      
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛,𝑟𝑟

=  ��𝑎𝑎𝑛𝑛,𝑟𝑟
𝑙𝑙,𝑡𝑡 �𝑦𝑦𝑙𝑙,𝑡𝑡  −  𝑦𝑦�𝑙𝑙,𝑡𝑡�

𝑙𝑙∈ 𝐿𝐿�

+
𝑡𝑡∈𝒯𝒯

𝑤𝑤
2
�𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑥𝑥𝑛𝑛,𝑟𝑟

𝑥𝑥𝑛𝑛,𝑟𝑟
𝐻𝐻 � + 1�                                           (13) 

 

3. Simulation Optimization Techniques: Simultaneous Perturbation Stochastic 

Approximation (SPSA) 

The optimization problem (1), as mentioned already, is highly underdetermined because there are 

many more variables than equations in the system. In other words, 𝑿𝑿 ∈ ℝ|𝐼𝐼|×𝑇𝑇 ,𝒀𝒀 ∈ ℝ|𝐿𝐿�|×𝑇𝑇 and 

|𝐼𝐼| ≫ |𝐿𝐿�|, and therefore the problem is very sensitive to the quantity of data and the detection 

layout in the real network. Thus, because the availability of new measurements like those 

provided by Smartphone and GPS localization allows calculating travel times between arbitrary 

pairs of points, this seems to be a promising approach for reducing this underdetermination. As 

mentioned before, it is unclear how these new measurements can be included in the analytical 

formulations, but it seems rather easy to deal with them by using approaches based on derivative-

free optimization methods that approximate the descent direction based on simulation. Among 

them, simulation optimization techniques are especially suited to optimization problems that 

cannot be solved with the usual analytical algorithms due to reasons such as: 

• The objective function cannot be analytically expressed as a function of parameters 

because its evaluation requires a simulation. Therefore, it is not differentiable in terms 

of the parameters. 

• The time cost of evaluating the objective function is expensive in regard to having 

simulated data for each evaluation of the function. 
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There is a wide range of different simulation optimization techniques, such as Nelder-

Mead, SNOBFIT and SPSA. (Osorio and Chong 2015) makes an approximation of the upper 

level function by building a metamodel that can be solved analytically. SPSA preserves the 

original upper level formulation and is easy to implement for simulation optimization problems. 

Simultaneous Perturbation Stochastic Approximation (SPSA) is commonly used in OD 

matrix estimation (Antoniou et al. 2015; Cantelmo et al. 2014; Cipriani et al. 2011; Lu et al. 

2015), and it can easily account for additional measurements (Antoniou et al. 2016; Bullejos et 

al. 2014; Carrese et al. 2017; Nigro et al. 2018). However, before extending its use, we have 

considered it necessary to learn about its computational performance.  

SPSA (Spall 1992) is a simulation-based optimization algorithm, and it requires only two 

evaluations of the objective function for approximating the gradient instead of 𝑁𝑁, as in the case 

of a finite-difference gradient approach. As in many iterative procedures, it begins with an initial 

OD matrix (usually a historical OD matrix), and the next point is computed using the first order 

Taylor development: 

                                                   𝑿𝑿𝑘𝑘+1 = 𝑿𝑿𝑘𝑘 − 𝑎𝑎𝑘𝑘 𝒈𝒈�𝒌𝒌(𝑿𝑿𝑘𝑘)                                                      (14) 

Two particularities distinguish this method from the gradient descent method: 

• The estimated gradient 𝒈𝒈�𝑘𝑘(𝑿𝑿𝑘𝑘), is calculated as:  

           𝒈𝒈�𝑘𝑘(𝑿𝑿𝑘𝑘) =
𝑍𝑍(𝑿𝑿𝑘𝑘 + 𝑐𝑐𝑘𝑘𝚫𝚫𝒌𝒌) − 𝑍𝑍(𝑿𝑿𝑘𝑘)

𝑐𝑐𝑘𝑘
⋅ �

Δ𝑘𝑘,1
−1

⋮
Δ𝑘𝑘,𝑁𝑁
−1
� =

⎝

⎜⎜
⎛

𝑍𝑍(𝑿𝑿𝑘𝑘 + 𝑐𝑐𝑘𝑘𝚫𝚫𝒌𝒌) − 𝑍𝑍(𝑿𝑿𝑘𝑘)
𝑐𝑐𝑘𝑘Δk,1
⋮

𝑍𝑍(𝑿𝑿𝑘𝑘 + 𝑐𝑐𝑘𝑘𝚫𝚫𝒌𝒌) − 𝑍𝑍(𝑿𝑿𝑘𝑘)
𝑐𝑐𝑘𝑘Δk,N ⎠

⎟⎟
⎞

 (15) 
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where 𝚫𝚫𝐤𝐤 is a random perturbation N-dimensional vector with Δ𝑖𝑖,∀𝑖𝑖 independent 

identically distributed random variables that satisfy 𝔼𝔼(Δ𝑖𝑖) = 0 and �𝔼𝔼((Δ𝑖𝑖−1)𝑛𝑛)� < ∞,∀𝑛𝑛. 

One commonly used perturbation is Δ𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵(1/2, ±1), which is a Bernoulli distribution 

with a probability of 1/2 for each ±1. This is the asymmetric design, although a 

symmetric design using 𝑍𝑍(𝑿𝑿𝑘𝑘 + 𝑐𝑐𝑘𝑘Δ𝑘𝑘) and 𝑍𝑍(𝑿𝑿𝑘𝑘 − 𝑐𝑐𝑘𝑘Δ𝑘𝑘) can also be considered. 

• The spacing coefficient 𝑐𝑐𝑘𝑘 and the step size 𝑎𝑎𝑘𝑘 are decreasing sequences of positive real 

values, and they satisfy some regularity conditions in order to ensure the convergence of 

the method, as detailed in (Spall 1992). Typically, the sequences used are: 

                                         𝑎𝑎𝑘𝑘 =  
𝑎𝑎

(𝐴𝐴 + 𝑘𝑘 + 1)𝛼𝛼    , 𝑐𝑐𝑘𝑘 =  
𝑐𝑐

(𝑘𝑘 + 1)𝛾𝛾                                 (16) 

where 𝑎𝑎,𝐴𝐴 and 𝑐𝑐 are fixed and depend on the problem, while 𝛼𝛼 = 0.602 and 𝛾𝛾 = 0.101. 

In (Spall 1992), it is shown that averaging many independent estimates of the gradient of 

Equation (15) contributes to a more stable and quicker convergence of the SPSA method. 

Therefore, the gradient estimation is finally calculated as: 

                                                           𝒈𝒈�(𝑿𝑿𝒌𝒌) =
1
𝑛𝑛𝑔𝑔
�𝒈𝒈�𝒌𝒌

𝒋𝒋 (𝑿𝑿𝒌𝒌)

𝑛𝑛𝑔𝑔

𝑗𝑗=1

                                               (17) 

where 𝒈𝒈�𝒌𝒌
𝒋𝒋 (𝑿𝑿𝒌𝒌) is calculated as in Equation (15). The asymmetric design for the gradient saves a 

large number of assignments, since all 𝒈𝒈�𝒌𝒌
𝒋𝒋 (𝑿𝑿𝒌𝒌),∀𝑗𝑗 share the mid-point 𝑿𝑿𝒌𝒌 evaluation.  

3.1. SPSA variants 

The versatility of simulation optimization techniques – especially when using SPSA – allows us 
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to include additional information in a newer form, such as the constraints in the OD estimation 

problem. (Ros-Roca et al. 2017) tried adding constraints to simulation optimization problems 

when dealing with the calibration of microsimulation models. In this case, we have tested 

variants of the method and different innovative techniques (explained below). 

3.1.1. Conjugate Gradient (CG) Descent version 

Some researchers in past works (Bullejos et al. 2014; Cantelmo et al. 2014) used the Conjugate 

Gradient (CG) (Luenberger and Ye 1973) descent method for the optimization procedures of the 

OD estimation problem. This modifies the descent direction in the iterative procedure by using 

the previous iteration gradient. It can be incorporated into SPSA by replacing Equation (14) 

with: 

𝑿𝑿𝒌𝒌 = 𝑿𝑿𝒌𝒌−𝟏𝟏 + 𝑎𝑎𝑘𝑘𝒅𝒅𝒌𝒌  

                             𝒅𝒅𝒌𝒌 =  −𝒈𝒈�(𝑿𝑿𝒌𝒌) + 𝛽𝛽𝑘𝑘𝒈𝒈�(𝑿𝑿𝒌𝒌−𝟏𝟏)      ,       𝛽𝛽𝑘𝑘 =  
𝒈𝒈�(𝑿𝑿𝒌𝒌)𝑻𝑻𝒅𝒅𝒌𝒌−𝟏𝟏
‖𝒅𝒅𝒌𝒌−𝟏𝟏‖𝟐𝟐

                              (18) 

 

3.1.2. Normalization of variables  
 

SPSA’s main drawback for the OD estimation problem is that all different OD flows receive the 

same perturbation magnitude, Equation (14). Furthermore, OD flows usually have very different 

magnitudes, which imply very different changes to each flow, and this can lead to several 

problems of convergence. (Tympakianaki et al. 2015) approached this phenomenon by clustering 

the variables according to their magnitudes. This work does so by normalizing to the interval 

[0,1] all variables using some reasonable bounds for each variable,  [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] and a classical linear 

transformation from [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] to [0,1], where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the reasonable lower and upper bounds 
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based on additional information from the network, such as socioeconomic or past reliable OD 

matrices, as in (Ros-Roca et al. 2018). Normalization is performed using the linear application: 

                                                         
𝜑𝜑𝑖𝑖: [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] → [0,1]

    𝑋𝑋𝑖𝑖     ↦     
𝑋𝑋𝑖𝑖 − 𝑎𝑎𝑖𝑖
𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖

                                            (19) 

  Using the normalized variables in SPSA procedure, each variable will be perturbed 

according to its magnitude. 

3.1.3. Selection of SPSA Gain Sequences 

Experience with similar problems shows that the selection of SPSA gain sequences, 𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘, is 

crucial for the convergence and performance of the algorithm. The sequences in the form of 

Equation (16) are widely used, as they satisfy the conditions of convergence that were proved in 

(Spall 1992). This reduces the problem to selecting appropriate values for 𝑎𝑎,𝐴𝐴,𝛼𝛼, 𝑐𝑐 and 𝛾𝛾. 

(Kostic et al. 2017) show the sensitivity of SPSA with respect to these parameters, but no 

research has been conducted on finding a criterion to select them in an automatized procedure. 

Based on the guidelines in (Spall 2003), an automated selection of the parameters 𝑎𝑎,𝐴𝐴 and 𝑐𝑐 is 

proposed in the current work and it has been implemented. The choice of these parameters is 

based on the objective function’s variability that results from the simulation and the desired 

perturbation steps in the early iterations. The schema is detailed below: 

(1) Fix 𝛼𝛼 = 0.602, 𝛾𝛾 = 0.101 as (Spall 1998) determines, where it is stated that they are 

optimal values for the convergence. 
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(2) Compute several evaluations of 𝑍𝑍(𝑿𝑿𝐻𝐻) to capture the variability of the objective function. 

Since the variables have been normalized, it seems natural to use the coefficient of variation 

(𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍)  = 𝜎𝜎𝑍𝑍/𝜇𝜇𝑍𝑍). The parameter 𝑐𝑐 is set at 𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐶𝐶. 

(3) Set 𝐴𝐴 as 10% of the maximum number of iterations (𝐴𝐴 = 0.1 · 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 ). 

(4) Simulate 𝑛𝑛𝑔𝑔 experiments using the SPSA logic 𝑿𝑿𝑖𝑖 = 𝑿𝑿𝐻𝐻 + 𝑐𝑐𝚫𝚫𝑁𝑁 and find the respective 

gradients, 𝒈𝒈𝑘𝑘, as in the SPSA procedure. 

(5) Determine the desired iterative modification of the first iteration: 

                                                𝑿𝑿𝑘𝑘+1 = 𝑿𝑿𝑘𝑘 − 𝑎𝑎𝑘𝑘𝒈𝒈𝑘𝑘 → 𝑿𝑿𝑘𝑘+1 − 𝑿𝑿𝑘𝑘 = |𝑎𝑎𝑘𝑘𝒈𝒈𝑘𝑘|                      (20) 

(6) Therefore, one can compute the corresponding 𝑎𝑎 for the desired change for the initial 

iteration:  

                        |𝑎𝑎𝑘𝑘𝒈𝒈𝑘𝑘| =  
𝑎𝑎

(1 + 𝐴𝐴 + 𝑘𝑘)𝛼𝛼 |𝒈𝒈𝑘𝑘| → 𝑎𝑎 =
|𝑎𝑎𝑘𝑘𝒈𝒈𝑘𝑘|(1 + 𝐴𝐴 + 𝑘𝑘)𝛼𝛼

|𝒈𝒈𝑘𝑘|                    (21)  

Since 𝑛𝑛𝑔𝑔 experiments have been performed, one has to choose the minimum, which is 

calculated as above, that is: 

                                                   𝑎𝑎 = min �𝑎𝑎{𝑖𝑖=1}, … ,𝑎𝑎�𝑖𝑖=𝑁𝑁𝑔𝑔� �                                                (22) 

 

3.1.4. SPSA Variants: Constrained SPSA and Penalized SPSA 

As already mentioned, the underdetermination of the OD estimation problem can lead to 

different adjusted OD matrices that show the same traffic counts at the sensor locations even 

though they are different. Furthermore, the adjusted OD matrix can also be non-consistent with 
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the socioeconomic factors of the area under study. In traffic studies, practitioners usually have 

access to historical data in the form of an OD matrix, 𝑿𝑿𝑯𝑯, which, with a certain degree of 

uncertainty, provides prior information about the mobility patterns of the study area. Therefore, 

including constraints in the SPSA formulation that accounts for this information could provide 

more realistic results. Our first approach was to add bounding values to the OD values, which is 

not easy to do in analytical formulations (Codina and Montero 2006) but is relatively easy to 

manage in SPSA. In (Cipriani et al. 2011), a single generation constraint is added to the 

minimization problem: 

                                                           �𝐺𝐺𝑜𝑜𝑖𝑖
𝑛𝑛ℎ

𝑖𝑖=1

≤ 𝐺𝐺𝑜𝑜∗   ,   ∀𝑜𝑜 ∈ {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}                                                 (23)  

with 𝐺𝐺𝑜𝑜∗ being the a priori generation value for the origin zone 𝑜𝑜 and 𝑛𝑛ℎ the number of time periods. 

The proposal in this paper specifies upper and lower bounds for each OD flow. This can be a 

percentage of the historical value 𝛽𝛽, which is in accordance with its degree of uncertainty. The 

minimization problem is then updated with the constraints: 

min𝑍𝑍(𝑿𝑿,𝒀𝒀)  = 𝑤𝑤1𝐹𝐹1(𝑿𝑿,𝑿𝑿𝑯𝑯) + 𝑤𝑤2𝐹𝐹2�𝒀𝒀,𝒀𝒀��                                                

                             𝒀𝒀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑿𝑿)                                                                                               

                                      𝑿𝑿 ∈ 𝐺𝐺 = �(1− 𝛽𝛽)𝑥𝑥𝑛𝑛,𝑟𝑟
𝐻𝐻 ≤ 𝑥𝑥𝑛𝑛,𝑟𝑟 ≤ (1 + 𝛽𝛽)𝑥𝑥𝑛𝑛,𝑟𝑟

𝐻𝐻  ,∀𝑥𝑥𝑛𝑛,𝑟𝑟 ∈ 𝑿𝑿� ⊂ ℝ+
𝐼𝐼×𝑇𝑇          (24) 

𝑿𝑿 ≥ 0                                                                                           

This single constraint in (24) is the constraint that results from summing all the upper 

bounds in (23) for each origin. The summation of all the constraints makes the feasible region 

bigger, thus permitting greater values among some variables, which is compensated by other low 
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values among others. This proposal for constrained SPSA defines a smaller feasible region that 

accounts for further information for each OD pair. 

The constraints that have been added to the problem also have an effect on the originally 

presented SPSA algorithm. (Sadegh and Spall 1998) proposed adding a projection to the set 𝐺𝐺 

during the iterative procedure shown in Equation (14). The projection is applied to only the 

iterative procedure as  𝑿𝑿𝒌𝒌+𝟏𝟏 = 𝜋𝜋𝐺𝐺 (𝑿𝑿𝒌𝒌 − 𝑎𝑎𝑘𝑘𝒈𝒈�𝒌𝒌(𝑿𝑿𝒌𝒌)), while 𝑍𝑍(𝑿𝑿𝑘𝑘 + 𝑐𝑐𝑘𝑘Δ𝑘𝑘) can be computed 

subject to non-negative OD values. This method, in which some strict constraints are added to 

the procedure, will be called Constrained SPSA. 

Other formulation, inspired in (Wang and Spall 1999) equivalent to (24) based on adds 

penalty functions to the objective function, that is: 

min𝑍𝑍(𝑿𝑿,𝒀𝒀)  = 𝑤𝑤1𝐹𝐹1(𝑿𝑿,𝑿𝑿𝑯𝑯) + 𝑤𝑤2𝐹𝐹2�𝒀𝒀,𝒀𝒀�� + 𝑟𝑟𝑘𝑘𝑃𝑃(𝑿𝑿,𝑿𝑿𝑯𝑯)                                           

                                          𝒀𝒀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑿𝑿)                                                                          (25) 

𝑿𝑿 ≥ 0                                                                  

where 𝑟𝑟𝑘𝑘 is an increasing sequence of the form 𝑟𝑟𝑘𝑘 = 𝑟𝑟(1 + 𝑘𝑘)𝜌𝜌, and 𝑃𝑃(𝑿𝑿,𝑿𝑿𝑯𝑯) is a set of 

penalization functions for the set of constraints that delimit the constraints of set 𝐺𝐺, formally: 

𝐺𝐺 ≜ �𝑞𝑞𝑛𝑛,𝑟𝑟(𝑿𝑿,𝑿𝑿𝑯𝑯) ≤ 0,∀𝑛𝑛 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑇𝑇� =                                                           

                  = �𝑥𝑥𝑛𝑛,𝑟𝑟 − (1 + 𝛽𝛽)𝑥𝑥𝑛𝑛,𝑟𝑟
𝐻𝐻 ≤ 0 , (1 + 𝛽𝛽)𝑥𝑥𝑛𝑛,𝑟𝑟

𝐻𝐻 − 𝑥𝑥𝑛𝑛,𝑟𝑟 ≤ 0,∀𝑛𝑛 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑇𝑇�           (26) 

    The penalty function 𝑃𝑃(𝑿𝑿,𝑿𝑿𝑯𝑯) has to be differentiable, non-negative and an increasing 

function. (Wang and Spall 1999) propose a sum for each constraint of penalizing functions that 

satisfy 𝑝𝑝(𝑥𝑥) = 0 if and only if 𝑥𝑥 ≥ 0, such as 
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     𝑃𝑃(𝑿𝑿,𝑿𝑿𝑯𝑯) =  ��𝑤𝑤𝑛𝑛,𝑟𝑟𝑝𝑝(𝑞𝑞𝑛𝑛,𝑟𝑟(𝑿𝑿,𝑿𝑿𝑯𝑯))
𝑇𝑇

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

= ��𝑤𝑤𝑛𝑛,𝑟𝑟 max�0, 𝑞𝑞𝑛𝑛,𝑟𝑟(𝑿𝑿,𝑿𝑿𝑯𝑯)�
2

𝑇𝑇

𝑟𝑟=1𝑛𝑛∈𝐼𝐼

    (27) 

As in the previous variant, the iterative procedure is also modified to incorporate the 

gradient of the penalization function: 

                                     𝑿𝑿𝑘𝑘+1 = 𝑿𝑿𝑘𝑘 − 𝑎𝑎𝑘𝑘 𝒈𝒈�𝒌𝒌(𝑿𝑿𝑘𝑘) − 𝑎𝑎𝑘𝑘𝑟𝑟𝑘𝑘𝛁𝛁𝑷𝑷(𝑿𝑿𝒌𝒌,𝑿𝑿𝑯𝑯)                               (28) 

4. Experimental framework 

The experimental framework used is of a synthetic nature, namely in that it selects a test network 

and assumes: 

• The a priori knowledge of a Ground Truth (GT) OD matrix that represents the “real 

demand” (it will be noted as 𝑿𝑿𝑮𝑮𝑮𝑮 along the article). 

• A heuristic detection layout identifying the location of counting stations in the network. 

• An SBA assignment of the Ground Truth Matrix. The estimated link flows resulting from 

the assignment at the links where the counting stations are located are taken as the “real 

measurements” in the computational experiments. 

The objective of the computational experiments is to analyse the quality of the results, 

which are the measurements of the various performance indicators of the corrected OD matrices 

that are estimated by the methods analysed in this research work. 

4.1. Design Factors 

The design factors in the computational experiments for the selected network are: 
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(1) Initializations of the target OD matrix. 6 different initializations have been used in order 

to contemplate different situations, from similar-structure matrices with different number 

of trips to non-similar-structure matrices: 

• Incremental+: Incrementing all the OD values of the Ground Truth matrix by a fixed 

percentage: 𝑰𝑰𝑰𝑰𝒄𝒄+ = 𝑿𝑿𝑮𝑮𝑮𝑮(1 + 𝛿𝛿), 𝛿𝛿 = 0.25. 

• Incremental-: Decrementing all the OD values of the Ground Truth matrix by a fixed 

percentage: 𝑰𝑰𝑰𝑰𝒄𝒄− = 𝑿𝑿𝑮𝑮𝑮𝑮(1 − 𝛿𝛿), 𝛿𝛿 = 0.25.  

• Chaos: Equidistributing all the OD values of the Ground Truth matrix by rows while 

fixing generated trips by rows. 

• Chaos+Inc+: Equidistributing all the OD values of the Ground Truth matrix by rows and 

incrementing all of them by the same  𝛿𝛿 = 0.25 fixed proportion. 

• Chaos+Inc-: Equidistributing all the OD values of the Ground Truth matrix by rows and 

decrementing all of them by the same  𝛿𝛿 = 0.25 fixed proportion. 

• Multitude: Adapted from (Antoniou et al. 2016) low demand initialization: 𝑿𝑿𝑮𝑮𝑮𝑮(𝑟𝑟 + 𝑞𝑞 ⋅

𝜀𝜀), with 𝑟𝑟 = 0.75, 𝑞𝑞 = 0.15 and 𝜀𝜀 ∼ 𝑁𝑁(0, 1/3). 

Note that the Incremental+ and Incremental– OD matrices have the same spatial 

distribution structure or mobility pattern as the Ground Truth OD matrix because only a 

regular increment or decrement has been applied, while the Chaos matrices present a 

complete perturbation that changes the structure of the OD matrix. In other words, the 

mobility patterns between the Ground Truth and the historical OD matrix, used as the 

seed for the estimation procedure, are different. Figure 1(a) visualizes the differences 

between three of those OD matrices using heatmaps in a red-orange-yellow-white 
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sequence, with red for null values and increasing to orange to yellow and to white as the 

flows increase. Regarding the total number of trips, the Ground Truth and the Chaos 

initializations have the same number of trips; the incremented OD matrices have 100𝛿𝛿% 

more; and the decremented ones have 100𝛿𝛿 % less. The Multitude initialization aims to 

align with the Multitude benchmarking proposal. 

(2) OD Adjustment methods. Two approaches and their variants have been considered in this 

case: first, the analytical approach discussed in Section 2; and second, the simulation 

optimization techniques described in Section 3. 

4.2. Test site 

A model of the city of Hillsboro, USA, has been selected for these experiments. It consists of 

618 links and 58 zones, and the simulation runs over a time horizon from 08:00AM to 09:00AM 

in 3 periods of 20 minutes. The network used is shown in Figure 1(b). As explained above, the 

computational experiments are synthetic in nature and use a Ground Truth OD Matrix (𝑿𝑿𝑮𝑮𝑮𝑮) to 

generate the input data. Thus, the counts for the 80 most used links are taken as the real counts in 

the network. In Figure 1(c), the detection layout is coloured in orange once an assignment is 

made to the network. 
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Figure 1.(a) Heatmaps of the Ground Truth, Incremental+ and Chaos+Inc+. (b)Network of the 

city of Hillsboro. (c)Detection Layout schema. 

4.3. Measures of quality 

Traditionally, almost all papers on OD matrix estimation determine the quality of the results by 

using the convergence of the Objective Function and the 𝑅𝑅2 fit between real and simulated traffic 

counts. From the optimization point of view, these measures are a good selection because they 

can show explicitly that the method used works specifically for the purpose of minimizing the 

objective function designed as an OD matrix estimation problem. Furthermore, it verifies that the 

estimated OD acceptably replicates the observed flows. However, these papers usually do not 

pay any attention to the quality of the results from a structural point of view. In other words, they 
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do not distinguish between whether the traffic OD patterns resulting from their adjustment 

approach exhibit an acceptable degree of structural similarity to the target matrix or, 

alternatively, their approach provides a perturbed matrix that is structurally different. If this is the 

case, then it could be doubtful that such a structural change could be physically interpretable in 

terms of the underlying transportation system, particularly when taking into account increases or 

decreases in the total number of trips. 

Classical distances between vectors can be applied to matrices by considering both 

matrices 𝑴𝑴,𝑵𝑵 ∈ ℳ𝑛𝑛(ℝ) as vectors of 𝑴𝑴,𝑵𝑵 ∈ ℝ𝑛𝑛×𝑛𝑛. Then, Euclidean, Manhattan and other 

vector distances can be used in the second component of the OD estimation problem, which is 

formulated as a minimization problem. However, these distances do not capture the differences 

and similarities of many aspects, such as the structure of the OD matrix; therefore, the spatio-

temporal similarities of the OD matrices are not captured by these measures (Djukic 2014). It 

seems clear that alternatives to these vector measures must be taken into account when 

comparing OD matrices. 

This measurement is borrowed from the Image Quality Assessment process for 

comparing two different images. (Wang et al. 2004) presents SSIM – the Structural SIMilarity 

index – for a matrix of pixels that is the product of three different comparison components: 

luminance, contrast and structure. Luminance corresponds to the intensity of illumination, which 

is indeed the mean of the different pixels in a sub-matrix. Contrast is the root of the squared 

average between pixels once the luminance is removed from the sub-matrix, thus making it the 

standard deviation. And finally, the structure is compared by using the covariance between the 

two matrices. These three factors are firstly transformed with the aim of adjusting them to the 

interval [0,1], where 1 means perfect match and 0 means totally different. SSIM is therefore a 
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similarity measure that is independent of the magnitude of the values in the matrix. The formula 

summarizing this explanation is below: 

                           𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙,𝒚𝒚) = 𝑙𝑙(𝒙𝒙,𝒚𝒚)𝛼𝛼𝑐𝑐(𝒙𝒙,𝒚𝒚)𝛽𝛽𝑠𝑠(𝒙𝒙,𝒚𝒚)𝛾𝛾                                             (29) 

where luminance, contrast and structure are defined as: 

                                     

⎩
⎪
⎨

⎪
⎧ 𝑙𝑙(𝒙𝒙,𝒚𝒚) = 2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1

𝜇𝜇𝑥𝑥2+𝑢𝑢𝑦𝑦2+𝐶𝐶1

𝑐𝑐(𝒙𝒙,𝒚𝒚) =  2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦+𝐶𝐶2
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2

𝑠𝑠(𝒙𝒙,𝒚𝒚) = 𝜎𝜎𝑥𝑥𝑥𝑥+𝐶𝐶3
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦+𝐶𝐶3

                                                                 (30) 

and 𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥, 𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦,𝜎𝜎𝑥𝑥𝑥𝑥 are the mean, standard deviation and covariance of the vectors 𝒙𝒙 and 𝒚𝒚. 

𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 are stability constants for avoiding numerical problems and are typically set to 𝐶𝐶1 =

𝐶𝐶2 = 2 · 𝐶𝐶3 = 1; and 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are weighting coefficients that are typically set to 1 (Wang et al. 

2004). In image comparison, the MSSIM is computed as the mean of the SSIM of all the sub-

matrices of dimension N, because pixel proximity is crucial in image pattern recognition. 

In the case of OD matrices, MSSIM is very useful, as suggested in (Djukic 2014). The 

MSSIM measure uses sliding boxes that correspond to the submatrices of the compared matrices 

in order to estimate its value. (Djukic 2014) conducts a primary analysis of the influence of these 

sliding boxes in the quality of the results. (Behara, et al. 2018) conducts a complementary 

analysis to determine operational rules for selecting boxes that are not easily applicable. This 

paper proposes a more meaningful variant that is easy to apply in practice, consisting of 

calculating the averages according to rows and columns rather than sub-matrices, that is, by 

using rectangular sliding rules that correspond to either rows or columns in the OD matrix. One 

row in an OD matrix represents the distribution of trips departing from a single origin zone 
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while, analogously, one column is the distribution of trips arriving at a single destination zone. 

This therefore corresponds to a physical interpretation of patterns in the underlying transport 

system. Thus, SSIM will capture the similarity between these described distributions by 

considering the mean, the variance and the structure of departing and arriving distributions, all of 

which correspond to the structural property of the trip patterns described by the OD. 

5. Computational experiments 

These experiments address different situations, from similar-structure matrices with different 

numbers of trips to non-similar-structure matrices. Thus, all 6 initializations are considered for 

both procedures and their variants. 

5.1. Dynamic Spiess approach 

The three versions of Dynamic Spiess discussed in Section 2, have been tested: 

• Original Spiess: A Major iteration that assigns the OD matrix 𝑿𝑿𝒌𝒌 in order to update the 

assignment matrix 𝑨𝑨𝒌𝒌. This is done after a Minor iteration at the upper level updates the 

OD matrix.  

• Alternative Spiess: Major iterations are done after the upper level optimization 

converges, when the relative error is lower than 10−4.  

 

We test these versions using the objective function in Equation (11), with 𝑤𝑤 = 0 and 𝑤𝑤 =

1, and the quadratic distance function in Section 2.2.2. The Entropy function has been tested 

only with the Dynamic Original Spiess version, which also uses 𝑤𝑤 = 1. 
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The objective of the experiments is to analyse both the performance of the algorithm and 

the quality of the solution arrived at by the OD estimation procedure. Figure 2 shows the results 

of the Dynamic Original Spiess version in 4 different experiments. As seen in Figure 2(a), the 

descent of the objective function is fast and stable. The quality of the results is usually assessed 

in terms of the correlation between the measured link flows 𝒀𝒀� and the estimated link flows 𝒀𝒀, 

which are provided by the matrix 𝑿𝑿 that results from the adjustment and the plot in Figure 2(b). 

The evolution of the Total Number of Trips is plotted in Figure 2(c), which does not correctly 

approximate the Ground Truth total number of trips (𝑁𝑁𝑁𝑁 = 9,878trips), which is incremented in 

all cases. 

  

Figure 2.Results for Dynamic Original Spiess for different initializations: (a) Objective Function 

(b) 𝑅𝑅2 (c) Num-Of-Trips. 

 

In most cases, the correlation coefficient becomes large enough to consider the result 

significantly good, and both the fast convergence and the high values of 𝑅𝑅2 allow finding an 

adjusted OD matrix in just a few iterations. However, more detailed insight reveals that this 

cannot be the case, since the adjustment process behaves as a meta-regression model that 
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balances flows among the implied OD pairs surveyed by the detection layout, while its action on 

other parts of the network, for which no additional information is available, could be rather 

undefined. Table 1 presents the results of the set of experiments (with all the different 

initializations) according to which adjusted matrices would be acceptable.  

𝑅𝑅02 and 𝑅𝑅𝑓𝑓2 are the fittings between the real counts and the simulated counts before and 

after the OD estimation process. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀0 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 stand for the MSSIM measure before 

and after the process of the OD matrix with respect to the Ground Truth OD matrix. The basic 

number of trip indicators has also been added in order to analyse the Dynamic Spiess proposal. 

Some conclusions are stated: 

• The Dynamic Spiess estimation procedure seems to work as a meta-regression procedure 

in which 𝑅𝑅𝑓𝑓2 is high no matter the initial matrix. However, the structural similarity,  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓, shows that the quality of the outcome does not correspond to the  𝑅𝑅𝑓𝑓2 fit. 

• The use of a distance term with respect to the initial matrix 𝑿𝑿𝑯𝑯 generally has a slightly 

negative effect on 𝑅𝑅𝑓𝑓2. But in these cases, MSSIM values are higher when the seed OD 

matrices are similar to the GT OD matrix. 

• The indicator for the number of trips does not converge to the GT matrix value (9,878 

trips), but instead increments in all cases the number of trips added to the network. 

Slightly more promising results are obtained when the distance function to the seed OD 

matrix is added to the Objective Function. 

• Regarding the experiments conducted with less computational effort by launching the 

assignment only when the optimization engine converged, the  𝑅𝑅𝑓𝑓2 final values are not as 

high as those in the other experiments, and the total number of trips increases more. That 
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fact confirms the importance of treating the DODE problem as a bilevel optimization 

problem that, at each iteration, can access the lower level in order to launch a complete 

Traffic Assignment. 

• The results obtained with the entropy function and 𝑤𝑤 = 1 are similar to those using the 

Euclidean distance, and they present no evidence of better performance when the second 

term is added to the objective function. 

The results when 𝑤𝑤 = 1 show slightly better performance with respect to the Number of 

Trips and MSSIM than when 𝑤𝑤 = 0, which tends to outperform the former in terms of 𝑅𝑅𝑓𝑓2. 

Furthermore, adding the second term also adds to the computational burden. Therefore, the term 

indicating the distance to the initial matrix will not be considered in the following experiments, 

which we conduct using our new approach based on simulation optimization techniques. 

5.3. SPSA variants with only Traffic Counts 

The original SPSA described above has been tested. The objective function used in these cases is 

the same as in the Dynamic Spiess procedure, Equation (6), with the aim of comparing one 

descent to the other without the distance term to the seed OD matrix. 𝑛𝑛𝑔𝑔 = 5 has been selected, 

based on (Kostic et al. 2017), having into account the equilibrium between a large number and 

the computational effort of the procedure.  

SPSA variants adding transport information have been generically tested for the test site. 

Based on the historical OD matrix for each experiment, constraints of the form (1 − 𝛽𝛽)𝑿𝑿𝑯𝑯 ≤

𝑿𝑿 ≤ (1 + 𝛽𝛽)𝑿𝑿𝑯𝑯 have been introduced with 𝛽𝛽 = 0.25. This means that the OD values can vary 

between -25% and +25% of their original values, which come from a historical and reliable OD 
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matrix. In this section, the three variants are compared and will be called Free SPSA, 

Constrained SPSA and Penalized SPSA. 
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Figure 3:(a) Results for the different variants of SPSA (without CG) and Multitude initial OD 

matrix. (b) Results for SPSA without Conjugate Gradient for the three structurally different 
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initializations [(i) Objective Function. (ii) 𝑅𝑅2. (iii) Num-Of-Trips. (iv) MMSIM with respect to 

the GT OD Matrix]. 

 

Figure 3(a) shows the behaviour of the three different variants of SPSA with a same 

initial OD matrix. Figure 3(a-i) and (a-ii) show the acceptable performance of all SPSA variants 

as a minimization procedure and as a metaregressor for traffic flow counts. In these cases, the 

descent is clear, despite the oscillations coming from the stochastic nature of the algorithm. The 

Total Number of Trips, Figure 3(a-iii), is unable to increase significantly to approach the Ground 

Truth Total Number of Trips. 

Naturally, the Free SPSA presents a better descent, followed by Penalized SPSA and, 

finally, the Constrained SPSA, which is the one with the worst descent. A similar phenomenon 

occurs in the evolution of the Total Number of Trips, where Free SPSA is the one that most 

approximates the Ground Truth OD matrix while Penalized and Constrained SPSA approximate 

it less because of the constraints added to the problem. On the other hand, the constraints added 

to the problem are reflected on the MSSIM evolution where clearly these constraints help to 

maintain the structure of the OD matrix, more similar to the GT OD matrix structure. 

Constrained SPSA seems to perform better. 

A comparison between all plots in Figure 3(a) and Figure 3(b) shows clearly that SPSA 

variants work properly only for those initial OD matrices that are structurally similar to the 

Ground Truth OD matrix. When the seed OD matrix is one of the Chaos initializations (Figure 

3(b)), the SPSA variants do not act as a minimization procedure; they do not increase 𝑅𝑅2 values; 

and they do not perturb the matrices at all. The variants are therefore useless in these cases, 

indicating that the SPSA procedures are in no way robust in terms of the initial OD matrix. This 
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is a drawback to using SPSA when one is not confident about the structure of the seed OD 

matrices being used. 

 

 

Figure 4: Results for the Constrained SPSA with and without Conjugate Gradient for two 

initializations: (a) Objective Function. (b) 𝑅𝑅2. (c) Num-Of-Trips. (d) MMSIM with respect to the 

GT OD Matrix. 

 

Figure 4 shows that the Conjugate Gradient version in the SPSA does not perform better 

for the different initializations.  

Finally, Table 1 summarizes the final results for all the whole set of experiments using 

SPSA variants and the 6 different initial OD matrices. It confirms that, in general, the results 

with the Conjugate Gradient variant are worse than those without it. The same observations 

regarding the figures above can be concluded from the table: When the initial OD matrix is 
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similar to the Ground Truth OD matrix, and according to the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀0 indicator, SPSA reaches a 

reasonably acceptable adjusted OD matrix that always presents a gap according to the Total 

Number of Trips. This total remains close to the historical OD matrix’s number of trips, which 

provides only a slightly smooth approximation. On the other hand, when the seed OD matrix 

presents another mobility pattern (or matrix structure), SPSA is not able to correctly adjust the 

OD matrix. 
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Table 1. Results for the OD matrix estimation using the different methods 

   Multitude Chaos Chaos+Inc- Chaos+Inc+ Incremental- Incremental+ 

Initial OD 
matrix  

NT= 9,878 7,408 9,878 7,408 12,347 7,408 12,347 
𝑅𝑅02 0.53455 0.31488 0.27755 0.34529 0.62258 0.82775 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀0 0.97694 0.55384 0.63012 0.46841 0.98080 0.98980 

Dynamic 
Original Spiess 

𝑤𝑤 = 0 

# Trips 11,160 12,907 12,140 13,847 11,219 12,892 
𝑅𝑅𝑓𝑓2 0.95539 0.94257 0.95057 0.95539 0.96470 0.94830 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.72022 0.38184 0.39740 0.37639 0.69495 0.66865 

𝑤𝑤 = 1 
# Trips 10,924 12,616 12,088 13,783 10,748 10,758 
𝑅𝑅𝑓𝑓2 0.93239 0.92122 0.92292 0.93239 0.86405 0.87253 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.80893 0.39473 0.37948 0.36233 0.81621 0.96131 

Dynamic 
Alternative 

Spiess 
(reassigning at 
convergence) 

𝑤𝑤 = 0 
# Trips 11,787 14,474 14,471 14,704 11,602 12,193 
𝑅𝑅𝑓𝑓2 0.75056 0.61761 0.55871 0.68595 0.80163 0.88829 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.67541 0.37639 0.32297 0.41516 0.68987 0.79545 

𝑤𝑤 = 1 
# Trips 11,306 12,897 12,820 14,345 11,159 11,178 
𝑅𝑅𝑓𝑓2 0.73245 0.87834 0.88597 0.77099 0.75260 0.86759 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.81159 0.34260 0.32471 0.38737 0.81575 0.90191 

Dynamic 
Original Spiess 

with entropy 
𝑤𝑤 = 1 

# Trips 10,712 12,580 11,729 13,060 10,066 11,677 
𝑅𝑅𝑓𝑓2 0.91775 0.91983 0.92381 0.90478 0.90383 0.85276 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.81212 0.37401 0.40073 0.39922 0.87151 0.86227 

Free SPSA 

Without 
Conjugate 
Gradient 

# Trips 7,638 9,891 7,420 12,307 7,869 12,314 
𝑅𝑅𝑓𝑓2 0.76555 0.32287 0.31971 0.36734 0.83025 0.78322 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.96174 0.53800 0.61651 0.42369 0.93343 0.97962 

With 
Conjugate 
Gradient 

# Trips 7,502 9,873 7,430 12,273 7,520 12,110 
𝑅𝑅𝑓𝑓2 0.78351 0.32077 0.32026 0.37927 0.77764 0.85414 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.96040 0.51189 0.60612 0.44794 0.95987 0.97855 

Constrained 
SPSA 

Without 
Conjugate 
Gradient 

# Trips 7,561 9,852 7,410 12,302 7,597 11,779 
𝑅𝑅𝑓𝑓2 0.77039 0.32919 0.27600 0.34280 0.75128 0.84229 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.97748 0.55137 0.62066 0.4769º3 0.96695 0.96683 

With 
Conjugate 
Gradient 

# Trips 7,454 9,916 7,436 12,314 7,448 12,166 
𝑅𝑅𝑓𝑓2 0.73949 0.31748 0.30464 0.36035 0.74284 0.83125 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.96954 0.54618 0.62592 0.46041 0.97435 0.98188 

Penalized SPSA 

Without 
Conjugate 
Gradient 

# Trips 7,535 9,896 7,476 12,294 7,679 11,929 
𝑅𝑅𝑓𝑓2 0.77594 0.32024 0.30609 0.36672 0.82867 0.82420 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.96682 0.54567 0.57959 0.45191 0.95378 0.95708 

With 
Conjugate 
Gradient 

# Trips 7,531 9,980 7,402 12,247 7,593 12,341 
𝑅𝑅𝑓𝑓2 0.75642 0.33581 0.30717 0.35379 0.78524 0.82757 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 0.95518 0.51248 0.62700 0.45143 0.95549 0.98987 
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6. Conclusions 

The experimental framework for the synthetic computational experiments assumes the a priori 

knowledge of a Ground Truth OD matrix, 𝑿𝑿𝑮𝑮𝑮𝑮, from which a set of link flow measurements 𝒀𝒀� 

has been generated for a subset of links 𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿 in the network, taken as the real 

measurements. The Ground Truth OD matrix 𝑿𝑿𝑮𝑮𝑮𝑮 has a total number of trips 𝑁𝑁𝐺𝐺𝐺𝐺. 

The hypothetical Ground Truth OD matrix 𝑿𝑿𝑮𝑮𝑮𝑮 has been perturbed, as described in 

Section 4.1, to generate various historical OD matrices 𝑿𝑿𝑯𝑯, each with a number of trips  𝑁𝑁𝐻𝐻, to 

be used as initial matrices in the computational experiments. Each computational experiment 

provides an estimate 𝑿𝑿 of the adjusted or corrected OD matrix, with a total number of trips 𝑁𝑁𝑋𝑋, 

and a set 𝒀𝒀 of estimated link flows for the subset of links 𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿 in the network. 

The computational results obtained using the Dynamic Spiess method are shown in Table 

1 and can be summarized as follows: 

• The dynamic version of (Spiess 1990), implemented with the Simulation-based 

Assignment of Visum18, shows an excellent convergence behavior in all cases. 

• If the quality of the resulting adjusted OD matrix 𝑿𝑿 is measured, as usually, in terms of 

the regression between the measured flows  𝒀𝒀� and the estimated flows  𝒀𝒀, the conclusion 

is that the Dynamic Spiess Algorithm has a very good performance and that any of the 

estimated 𝑿𝑿 matrices reproduces the link flows very well. 

• But, not all the resulting 𝑿𝑿 are of the same quality: 

o The comparison of 𝑁𝑁𝐺𝐺𝐺𝐺 with 𝑁𝑁𝑋𝑋 shows significant discrepancies depending on 

the kind of perturbation with which 𝑿𝑿𝑯𝑯 was generated. 

o The structural similitude analysis in terms of MSSIM between 𝑿𝑿𝑮𝑮𝑮𝑮 and 𝑿𝑿 shows: 
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 An acceptable degree of structural similitude when the perturbation 

generating 𝑿𝑿𝑯𝑯 produces a seed OD matrix roughly close to 𝑿𝑿𝑮𝑮𝑮𝑮. 

 A significant structural dissimilitude when  𝑿𝑿𝑯𝑯 is significantly far from 

𝑿𝑿𝑮𝑮𝑮𝑮. 

o Therefore one can conclude that, although the new analytical approach exhibits 

nice convergence properties - in terms of rapidly reducing the value of the 

objective function to a stable result - and shows a high capacity of reproducing the 

observed flows 𝒀𝒀�, it is unable to identify the hypothetical Ground Truth 𝑿𝑿𝑮𝑮𝑮𝑮, or a 

matrix close to 𝑿𝑿𝑮𝑮𝑮𝑮with a similar structure, when the seed matrix is rather 

different from it.  

The weighting factor 𝑤𝑤1 for the distance term 𝐹𝐹1(𝑿𝑿,𝑿𝑿𝑯𝑯) between the OD matrices set to 

zero, 𝑤𝑤1 = 0, have been considered. While the results with 𝑤𝑤1 ≠  0 show a slightly better 

performance, although an increase of the computational burden. These results look similar to 

other researchers, (Toledo and Kolechkina 2013), which allocate a negligible weight to this term 

of the objective function. When the initializations correspond to perturbed matrices, structurally 

very different, from the GT OD matrix, the analytical approaches exhibit a degree of robustness 

leading to a relatively close solution. While the SPSA seems to get lost converging only when 

the initial values are not that far.  

This paper has explored the SPSA simulation-based approach, for its intrinsic capability 

to include new terms in the objective function. However, before testing the extensions of SPSA, 

it should be verified the quality of the solutions provided and its performance.  The 

computational results, shown in Table 1, indicate that: 
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• The conventional SPSA has a worse convergence behavior than the analytical 

approaches. If the quality of the resulting adjusted OD matrix 𝑿𝑿 is measured, in terms of 

the regression between the measured flows 𝒀𝒀� and the estimated flows 𝒀𝒀, then the results 

are not as good as those for the analytical approach. Furthermore, the relationship 

between 𝑁𝑁𝐺𝐺𝐺𝐺 and 𝑁𝑁𝑋𝑋 exhibits an anomalous behavior in some cases and, in terms of 

MSSIM and although they are bounded,  𝑿𝑿𝑮𝑮𝑮𝑮 and 𝑿𝑿 show significant differences. The 

results are more acceptable when 𝑿𝑿𝑯𝑯 is close to 𝑿𝑿𝑮𝑮𝑮𝑮. 

• The proposed improvements to SPSA aimed at limiting the growth of 𝑁𝑁𝑋𝑋 while keeping 

or improving the structural similitudes between 𝑿𝑿𝑮𝑮𝑮𝑮, 𝑿𝑿𝑯𝑯and 𝑿𝑿, led to two alternative 

formulations. First, a constrained SPSA in terms of bounding constraints on the changes 

in the entries of  𝑿𝑿. Second, a penalized SPSA, adding a penalty term to the objective 

function to limit the changes in the entries of  𝑿𝑿. Both versions provided similar results in 

terms of:  

o Better convergence behavior than the conventional approaches. 

o Measuring the quality of the adjusted OD matrix 𝑿𝑿, in terms of the regression 

between the measured flows �𝑌𝑌�𝑙𝑙� and the estimated flows {𝑌𝑌𝑙𝑙} for ∀𝑙𝑙 ∈ 𝐿𝐿� ⊆ 𝐿𝐿, the 

results are significantly better than those for the conventional approach. 

o The relationships between 𝑁𝑁𝐺𝐺𝐺𝐺 and 𝑁𝑁𝑋𝑋 are significantly improved. 

o In terms of MSSIM 𝑿𝑿𝑮𝑮𝑮𝑮 and 𝑿𝑿 are much closer than using Free SPSA. 

o The results also seem more acceptable when 𝑿𝑿𝑯𝑯 is close to 𝑿𝑿𝑮𝑮𝑮𝑮. 

• However, from a computational point of view the constrained version outperforms the 

other versions, and seems, therefore, the most appropriate to investigate the open 

questions raised by this analysis.  
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